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EVERY NULL-ADDITIVE SET IS MEAGER-ADDITIVE
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ABSTRACT
It is proved that every null-additive subset of “2 is meager-additive. Sev-
eral characterizations of the null-additive subsets of “2 are given, as well
as a characterization of the meager additive subsets of “2. Under CH, an

uncountable null-additive subset of “2 is constructed.

1. The basic definitions and the main theorem

1. Definition: (1) We define addition on “2 as addition modulo 2 on each compo-
nent, ie., if r,y,2 € “2 and z + y = =z then for every n we have
z(n) = z(n) + y(n) (mod 2). (2) For 4,B C “2 and z € “2 we set x + A =
{z +y: y € A}, and we define A + B similarly. (3) We denote the Lebesgue
measure on “2 by u. We say that X C “2 is null-additive if for every A C “2
which is null, i.e. p(A) =0, X + A is null too. (4) We say that X C “2 is
meager-additive if for every A C “2 which is meager also X + A is meager.

2. THEOREM: Every null-additive set is meager-additive.

3. Outline and discussion: Theorem 2 answers a question of Pawlikowski. It
will be proved in Section 2. In Section 3 we shall present direct characterizations
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of the null-additive sets, and in Section 4 we shall do the same for the meager-
additive sets.

It is obvious that every countable set is both null-additive and meager-additive.
Are there uncountable null-additive sets, and even null-additive sets of cardinality
2%0? Tt will be shown in Section 5 that if the continuum hypothesis holds, then
there is such a set. Haim Judah has shown that there is a model of ZFC in which
all the null-additive sets are countable, but there are in it uncountable meager-
additive sets. This is the model obtained by adding to L more than ®; Cohen
reals. In this model the Borel conjecture holds, and therefore every null-additive
set is strongly meager and hence countable. On the other hand, in this model

the uncountable set of all constructible reals is meager-additive.

2. The proof of Theorem 2

4. Notation: (1) we shall use variables as follow: ¢,j,%,!,m,n for natural
numbers, f,g,h for functions from w to w, 7,(,v,0,7 for finite sequences of
0’s and 1’s, z, 5, z for members of “2, A, B, X,Y for subsets of “2, and S, T for
trees. (2) “>2 =|J,,, 2. We shall denote subsets of “>2 by U, V. For 5 € “>2,
U C “>2 and z € “2 we shall write 7 + = for 7 + z [ length (5), and U + z for
{n+x:n €U} (3)For n,v € “>2 we write n < v if v is an extension of 7.
(4) A tree for us is a nonempty subset of “>2 such that

(a) if n <v and v € T then also n € T, and

(b) if n € T and n > length (n) then there is a v of length n such that n < v

and veT.

(5) For a tree T, Lim(T) = {z € “2: foreveryn < w we have z [ n € T}.
(6) A tree T is said to be nowhere dense if for every n € T there is a
T € “>2such that n < 7 and 7 ¢ T. A set B C “2 is nowhere dense if
B C Lim(T) for some nowhere dense tree T. (7) For every z,y € “2 we write
z = y if z(n) = y(n) for all but finitely many n < w. For A C w2, Afin =df
{ye“2y=xforsomex e A}. 8) UM =¥ {reU: 7 dvorv a7} (read:
U through v). (9) UV =% {r € “>2: v ~ 7 € U} (read: U above v), and for
n € “>2 we define nt*) =4 (n(k +14): ¢ < length (n) — k). (10) For v, € “>2U%2
we write v ~, 7 if length (v) = length () and v(i) = n(i) for every n < i <
length (v). For § C “>2U“2 we define S~ = {v: v ~, n for some 5 € S}.
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5. Outline of the proof: Let X C “2 be null-additive. It clearly suffices to prove
that for every A C “2 which is nowhere dense, X + 4 is meager. Given a nowhere
dense tree S we shall give a condition which is, as we prove in Lemma 6, sufficient
for a tree T" to be such that T+ .5 is nowhere dense. Then we shall split X into a
union X = Uf:l X; such that, for each 7, X; C Lim (7;) where T} is a tree which
satisfies that condition. Thus for a nowhere dense S, each set X; + Lim (S) C
Lim (7; + S) is nowhere dense, hence X 4+ Lim (S) C |J;2; Lim (T; + S) is meager.

6. LEMMA: Let T be a tree such that
(a) T is nowhere dense.
(b) f = fr is the function from w to w given by f(n) = min{m : for every n €
"2 there is a T € ™2 such that n < 7 and T ¢ T}. Thus for every sequence
n of length n there is a witness of length < f(n) exemplifying that T is
nowhere dense. Obviously, for every n < w, f(n) > n, and if n < m, then
f(n) < f(m).
Let g be a function from w to w. We can find @ = (n;: i < w) and @' =
(nl: i < w), increasing sequences of natural numbers such that
(c) f99(n;) < n! < miyy for every i < w, where f™ denotes the m-th iteration
of f.
Then for every tree S which satisfies
(d) S is of width (7, g), i.e., for every i <w we have |%2n S| < g(i),
T + S is nowhere dense.

Proof: Let n € ™2. We shall show the existence of an 7' € ™2 such that ndrn
andn' ¢ T+ S.

By (c) there is a sequence m, . .., my(;) such that mg = n;, f(mi) < mpyq for
0 < k < g(i) and mgy(y = n}. Let (i k < k;) enumerate the set *2n S. By (d),
k; < g(2). We define 7, € ™2 for 0 < k < k; by recursion as follows. Start with
1o = 7. Given n € ™*2, for k < k;, we shall define 7343 € ™*+12 so that for no
extension 7 € ™2 of k1 shall we have ' + 7, € T. We have ng + 71 [ my € ™2
and, by the definition of f and by the choice of the my’s, mx + 7% | my has an
extension v € ™*+12 such that v ¢ T. If we take ng+; = v + 7% | miy then
Me+7k [ My Qv implies e I Nkt Mev1 € ™12 a0d Mey147% [ Mip1 = v ¢ T,
and therefore for every 7 € ™2 such that m < 7’ we have 7' + 7% ¢ T. Let
7' = M,, and assume that 7/ € T + S. Then, for some k < k; < g(4), we have
7' + 7 € T, contradicting our choice of g1 = 7' | mi4yr. Thus 7' ¢ T+ S.
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7. LEMMA: If S, T;, i € w are trees and Lim (S) C ;¢ Lim(T;), then for some
n€ S and j€w, S[”]QT,-.

Proof: Suppose that this is not the case, i.e., for every 7 € S and i < w thereis a
¢ such that ¢ € S and ¢ ¢ T;. Once there is such a ¢ we can assume that p < ¢
and length ({) > length (). We define now, by induction on i, #; and k; so that
k; = length(n;), ko =0, no =), m < Mmit1, ki < kig1, N1 € S and 9y ¢ T
Let y = ;e mi- Since n; € S for every i € w, y € Lim(S) C {J,, Lim (T3),
hence for some j € w, y € Lim (T;). However, y | kj+1 = n;41 ¢ T}, contradicting
y € Lim (Tj).

8. LEMMA: Let S and T be trees such that Lim (S) C (Lim (7). Then there
arek <w, n,v€*2, neS such that §M C TV,

Proof: For n < w, 01,02 € "2 and 03 € T we define
Toyon = {ri7 401} U{oy ~Ti03 ~T €T}
(This is the tree T12] with “oy replaced by o,”.) Clearly

(1) (Lim (T))ﬁn = U Lim (T0'1 702)'
n<w,01,02€"2,02€T

Since there are only countably many T;, 5,’s in (1), there are, by Lemma 7, a

¢ € S and j < w such that SK! C T5,,0,- Clearly there is an 1 with ( <7 and a

v with length (v) = length () such that S C T, (If ¢ < ¢} then n = o, and

v = 03, else 01 4 ¢ and then 7 = ( and v = o3 ~ { | [length (¢), length (03)) .)

9. LEMMA: Let X be a null-additive set. Let T be a tree such that p(Lim (T')) >

0. There is a tree T* such that p(Lim (T*)) > 0, moreover for every n € T* also
p(Lim (T*0)) > 0, and ((*2 ~(Lim (T))%) + X) N Lim (T*) = 0, and then

- X
X= U Yo
n€T*, length ({)=length (n).

where Y,’)"C = {z € X: ( ~ zllength (O) 4 T+ C T},

Proof: Since p(Lim (T)) > 0 then, as easily seen, u((Lim(7))i?) = 1, hence
#(*2 ~(Lim (T))8") = 0. Since X is null-additive also (X + (“2 N (Lim (T))f?))
= 0. Hence there is a tree T* such that

pLim (T*)) >0 and (X 4+ (“2N(Lim(7))5")) N Lim (T*) = 0.
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Without loss of generality we can assume that 7* has been pruned so that, for
n € T*, w(Lim (T*I7)) > 0.
Let x € X; then

“2N(z + (Lim (T))8*) = z + (“2 \(Lim (T))™) € X + (“2 \(Lim (T))f").

Hence (“2 \(z+ (Lim (7))i*))NLim (T*) C (X +(“2 ~(Lim (T))f*)nLim (T*) =
0, i.e., Lim(T*) C z+(Lim (7))f", and therefore Lim (z+(T*)) = x+Lim (T*) C
(Lim (T))f". By Lemma 8 there are n € T* and v € *"8th("2 such that
gllength(m) L p*() C T, Let ¢ = 7+ v; then ¢ + 7 = v and therefore
¢ ~ gllength (M) 4 [l C T C T, hence z € Yn’i.

10. LEMMA: Let X be null-additive, and let 7t = (n;: i < w), 7’ = (nl: i <w) be
such that, for every i < w, n; < nl and n} +1- i < n;41; then we can represent
X as |U,, <w Xm such that, for each m, for some real a, € (0,1) and S, of
width (7, ga,,) we have X,,, C Lim(S,,), where for every real a € (0,1), g, is the
function on w given by g,(0) = 1, g,(¢) = max(1,int(log,(a)/log,(1 — 27%))) for
i > 0, and for a real d, int(d) is the integral part of d.

Proof: Since nl + 1 - oni < n;y1 we can fix for each 0 < ¢ < w a sequence
(i 7 € n:2) of pairwise disjoint subsets of the interval [n},ni41) having i
members each. Let B C “2 be given by

B={ye“2: (Vj>0)(3k e Ujytn;) y(k) = 1}

B is clearly a closed subset of “2, hence for T = {y | n: y € BAn € w}
B =Lim(T).
The properties of T' in which we are interested are
(BO) T D> ™2.
(B1) For each 7 € T N ™2 we have |T[”1 n "*’+12| = 2(rni—mi)(1 — 279,
(B2) I 1,00, .. ko1 € ™2, vF,... vt €™H2 ntyeT, y 9 v for
[ <k and vg,..., V1 is with no repetitions, then

l{n-i-: < "7+ c m+12, (Vl < k)(?}+ + y:+ c T)H < 2m+1—n§ (1 _ 2—i)k'

(B3) For every n € ™2 we have: 7 | n; € T implies € T.

These properties can be established by an obvious counting argument.
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By (B0), (B1) and (B3) we have

p(Lim (T)) = p (ﬂ{x €Yz n; € T})

i=1
p({z €“2:x [ niy1 €T))
p{z €“2:z [ n;, € T})

=p{ze“2oineTh []

i=1
o

oo
|T N "i+1 2‘/2m+1 L
= 1 . _—_—m = —_ H .

For the T which we constructed and the given X, let T* and Y, ¢ = Yn),(c be
as in Lemma 9. For p € 'n&th(M2 let Y, ., = {y € Y, : v | length(n) = p}.
Clearly

(2) X = U Yo.ce-
n€T*, length (n)=length ({)=length (p)

Since there are only countably many Y, ¢ ,’s they can be taken to be the X,,’s
we are looking for, provided we show that every such Y, ¢ , is a subset of Lim (S)
for some tree S of width (7', g,) for some real 0 < a < 1. We shall see that this
is indeed the case if we take S = {y [ m: y € Y ¢, m < w} and a = u(T*);
a > 0 by what we assumed about T*. As, obviously, Y, ¢, C Lim(S), all we
have to do is to show that S is of width (7', g,). We fix a j € w.

We can choose a set W C SN ™+12 such that the function mapping n € W to
n | n} is one to one and onto SN "59.

We fix now 7, (, p and denote Y, ¢ , by Y and the length of 7,(, p by n. Let
z € “2 be such that z [ n = { + p and 2(¢) = 0 for ¢ > n. Then for every y such
that 4 | n = p we have y + z = ¢ ~ y®. Therefore, by the definition of ¥ we
have

Y={ye“2yln=p, ((~y™)+ T C T}

(3) Y ]
={ye“2yln=p y+2+T""CTh

for every y € Y there is a unique 7 € W such that 7 [ n; = y [ n} (7 may be
y [ nj+1). Clearly [W| = |SN72| and we denote |W| by s, so it suffices to prove
8 < ga(j). If nj <, then the only member of S N"i2is p [ n} hence s = 1, so
8 < ga(j). We shall now deal with the case where n} > n. Let 79,...,7,—1 be

the members of W. For m < s, 7., = y | nj4; for some y € Y, hence, by (3),
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Tm + 2 + T*W C T and therefore (z + T*") N "+12 C 7,,, + T. Since this holds
for every T € W we have

(4) 4 TAmm2C () 1+ T
m<s
Let us find out the size of ), (7 + T). Let 0 € "32, and we shall ask how
mes(Tm + T) extend 6. Now 7 € 7, + T for each m < s
iff 7+ 7 € T for each m < s. If, for some m < s, 0 + 7, [ n} ¢ T, then also

many members 7 of [

T+ 7 ¢ T, hence o has no extension in (3, . (7m + T). If, for every m < s,
0+ Tm [ nj € T, then by (B2) (where n = 0, vm = 7n [ ) and v} = 7n),
since T, [ 0 # 7 [ ) for m # [, the number of 7’s such that ¢ < 7 € "+12 and
T+ T € T for every m < s is 2™+~ (1 —277)%. Since there are 2" different
o’s in ™2 we have

() (rm + T)| < 2M% - (1 - 279",

m<s

(5)

On the other hand, since u(7*") = a, T*7M N "5+12 has at least a- 2™+ mem-
bers, and so has z + T*" N ™+12,  Comparing (4) with (5) we get
a- 2%+ < 2m+(1 - 279)% e, a < (1 —277)%, logy(a) < s-logy(1 — 277),
s < logy(a)/ logy(1 — 277).

11. Proof of Theorem 2: Let X be null-additive. As mentioned in subsection 5,
it suffices to show that for every nowhere dense tree T', X + Lim (T') is meager.
Let f = fr as in Lemma 6. Define by recursion ng = 0, n} = f9/6+0®(n,;) 41
and nj4p =nl +1i- 2mi 4+ 1. By Lemma 10, X C J,, ., Lim (S ), where for some
am € (0,1) Sy, is of width (7', ga,, ), hence it suffices to show that if S is of width
(7', ga) for some a € (0,1) then Lim (S) + Lim (T) = Lim (S + T') is meager. Let
j be such that ]ﬁ < a and let 71,...,m be all the members of S of length
n};. Then § = Ule Sim} and Lim (8) = Ule Lim (S™)). Therefore it suffices to
prove that for 1 <! < k, Lim (S;) + Lim (T) is meager and this follows once we
show that S; + T is nowhere dense. To prove this we show that the requirements
of Lemma 6 hold here for S;, 7. (a) and (b) hold by our choice of T and f. Let g
be defined by g(i) = 1 for i < j and g(i) = g4(¢) for i > j. Now we shall see that
(c) holds. For i < j we have n! = f9/6+0@(n;) + 1> f(n,)+1= 90 (n;) +1,
since f(n) > n for every n, and for i > j we have n} = f9/G+0®(n;) 4+ 1 >

9O (n;) +1 = f99(n;) + 1, since a > 2 7 and the map a — g,(i) is a
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decreasing function of a. Thus for every i < w, f9¢)(n;) < f9/G+00)(n;) < nl.
(d) of Lemma 6 holds since, for i < j, [%2N 8| = 1 = ¢(¢) and, for i > 7,
M2N 8| < %20 S| < gald) = 9(d)-

3. Characterization of the null-additive sets

12. Definition: By a corset we mean a non-decreasing function f from w to
w {0} which converges to infinity (i.e., for every n < w, f(m) > n for all
sufficiently large m). For a corset f, we say that a tree T is of width f if for
every n < w, |T N™2| < f(n); and we say that T is almost of width f if
|T 02| < f(n) for all sufficiently large n.

13. THEOREM: For every X C “2 the following conditions are equivalent:
a. X is null-additive.
b. For every corset f there is a tree S of width f such that X C (Lim (S))f®.
c. For every corset f there are trees S,,, m < w, which are almost of width
f such that X C U,,,,(Lim (5 ))8".
d. For every corset f there are trees S,,, m < w, of width f such that
X C Upmeo Lim (Sm).

Proof: (b)—(c) is obvious.

(c)—(d): Let S be a tree almost of width f. Then for some k we have [TN"2| <
f(n) for all n > k. By (1) of Lemma 8,

(Lim (S))f» = U Lim (S, o,)-
01,03€%2,02€S
Each S5, o, is of width f since, for n < k, we have |S,, 5,N"2| =1and forn > k
we have |S;, 5, 1"2| < [SN™2| < f(n). Therefore, if X C |, <., (Lim (8,))f" as
in (c) then each S, can be replaced by countably many S, ,,’s and (d) holds.

(d)—(b): Let f be a corset. We can easily define by recursion a sequence
0 = ng < ny < --- of natural numbers and a corset f* such that for all j < w
and m > n;4q we have (j +1)-2"% . f*(m) < f(m).

For a given corset f, if X satisfies (d) let S?, m < w, be as in (d) for the
corset f*. We construct now a set S C “>2 by defining S N ™2 by recursion on
m. SN %2 = {()}. For n; <m < iy let

Sn"‘2={n€"‘2:71[niGSﬂ"‘ZandUES;"m’ for some j <1V j = 0}.
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S can be easily seen to be a tree, and clearly (Lim (5))®™ 2 U, ., Lim (S}) 2 X.
For m < n; easily [SN™2] < f(m), for n; <m < ni41,1 > 1 we have [SN™2| <
Yi<i |87 N™ = X0, 2% (S5 N2 < (i+1)-2% - f*(m) < f(m), thus S is
of width f.

(d)—(a): Assume now that (d) holds for X, and let A C “2, pu(A) = 0; we
shall prove that u(X + A) = 0. First we shall mention two lemmas from measure
theory the proof of which is left to the reader.

LEMMA A: For every tree T with u(Lim(T)) = a > 0 and ¢ > 0 there is an
N € w such that for every n > N there is at C "2NT such that |t| > 2"(a —¢€)
and, for each 1 € t, pu(Lim (T17)) > 27"(1 — ).

Using Lemma A one can prove

LEMMA B: For every tree T with u(Lim (7)) > 0, every € > 0 and every sequence
(e:: 0 < i < w) of positive reals there is a subtree T' of T and an increasing
sequence (n;: i < w) of natural numbers such that ng = 0, p(Lim(T')) >
w(Lim (T)) — € and

(6) fori>0 and every n € “2NT', u(Lim(T'M)) > 27™(1 - ¢,).

By basic measure theory u(Af") = 0, so there is a tree T such that p(Lim (T))
> 0 and Lim (T) N A% = @ hence (Lim(7))%* N A = §. Given ¢ < p(Lim(T))
and (€;: i < w) as in Lemma B we obtain a subtree T' of T as in that lemma with
p(Lim (7”)) > 0. The union of sufficiently many “finite translates” of 77, i.e.,
trees T, . asin (1) of Lemma 8, is a tree T" satisfying (6) with p(Lim (T")) >
i (Lim(T")f = (Lim(7"))f* C (Lim(T))®® and hence Lim(T")N A C
(Lim (T))fi* N A = @. We take now ¢; = 1/4(i + 1)3 and take T to be T" and we
get u(Lim (T)) > 1 and

(7) fori>0andeveryne™2nT, p(Lim(TM))> 2~ (1 - m)

Let f be the corset given by f(n) =i+ 1 for n; < n < n;41. By (d) there are
trees Sy, of width f such that X C |J,,,, Lim(Sy). To show that (X + A) =0
it clearly suffices to show that, for every tree S of width f, u(Lim (S) + A) = 0.

We define

T* ={ne“>2:v+neT for every v € S of the same length as n}.



366 S. SHELAH Isr. J. Math.

We do not show that T* is a tree but obviously, if { < € T*, then { € T*,
thus Lim (7*) is defined. If p(Lim (7*)) > O then, by a well-known property of
the measure, u(Lim (7*)f") = 1, hence in order to prove u(Lim (S) + A) = 0 it
suffices to prove (Lim (S) 4+ A) N (Lim (7*))f* = . Assume y € (Lim (S) + A) N
(Lim (T*))fi". Since y € (Lim (T*))f" there is a 3’ € “2 such that y'(n) = y(n)
for all sufficiently big n’s and 3y’ € Lim (7™*). Since y € Lim(S) + A there
is an x € Lim(S) such that y + x € A, hence y + z ¢ (Lim(7T))f", hence
vy +x ¢ Lim(T). Therefore, for some n, ¢’ | n+ 2z | n ¢ T, hence, by the
definition of T*, y' | n ¢ T* contradicting y’ € Lim (T*).

We still have to prove that p(Lim (7*)) > 0. We shall prove, by induction on
1, that

1
(¥ m<nSngy = (INT)N" €23 s
i<i

Once we establish (8) we notice that since

Lim (T) N Lim (T") = | J Lim(T) Mz € “2 z [n €T},

ndw
and the set Lim (T) N{z € ¥2: z | n € T*} is increasing with n hence
p(Lim (T) N Lim (T7)) = lim p(Lim(T)Nz €“2:x [neT*})
< lim 27™(T~T*)n"2|

n

1
< lim Y ———s
‘n~°°;0 45 +1)?

J=04]+1 24

B =

and since p(Lim (T)) > 1 p(Lim (T*)) > 0.
To prove (8), assume now n; < n < n,;4;. By the definition of T*
(T~TYN™"2={neTn"2:3BpeSN™2)(p+n¢T)}
={neTn"2:(Ipe SN"2)(nIn;+p[n: ¢ T)}
U U meTn™2:pini+pini €T An+pg¢T}

pESN™2
C{ne™:nlin e T~NT"}

U U {ne™2n+pefocem2ian, €T Ao ¢ T}}.
peESNT™
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Therefore
(TNT*)n™2f <2 UTNTyN™2|+|SN"2|{c € "2:0 | n; € T Ao ¢ T}|.

For ¢ > 0 we have, by the induction hypothesis,

1

TNT ™2 <Y e

j<i

For i = 0 we have (T~T*)N™2 = since ng =0 and @ € T*.

211.
ng| « = n2: cETA TH < =3,
SN"2 < fln)=i and o€ 2o lneTAcETHS 7oy
by (7). Thus
I(T\T*)mn2l<2n—n‘-.2niz__1_+(i+1).*'27f__<2" Z ——1—-—
< 435 + 1) 4G +12 = 47 +1)?

j<i i<i+l
which is what we had to show.

(a)—(c): Most of the proof follows that of Lemma 10. We need also the following
Lemma 14, which will be proved later. Let f be a corset.

14. LEMMA: There is an infinite sequence 0 = ng < ny; < ngs < --- and a tree T
such that for every i € w we have f(n;1;) > (i+1)-2"*! +1 and
(B1) For each n € T N™2 we have [T 0 ™+12] = 2(+1=ni) . (1 — 2-G+1)),
(B2) If n,vg,...,vk_1 € ™2, ug',...,u,'c"_l € M1 1/]7" # vt forj <1<k,
n+v €T, y 511/[" for |l < k, then

. k—1
[{nt:n Qnt e™m2, VI <k)(nT +yt e T} <2mn—™ (1 _ 2—<1+1))

Let (n;: ¢ € w) and T be as in Lemma 14. As in the proof of Lemma 10 we get
u(Lim (T)) > 0. Let T* and Y, ¢ = Y, be as in Lemma 9 and let Y, ¢ ,, § and
z be as in the proof of Lemma 10. All we have to do is to show that S is almost
of width f. Let us fix 5, ¢ and p. We shall now see that

If 7 € T*" ™2 then
[t ol St € T g} alneesn) < (1 - gmGHD)SaIL
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Let nt € T* n "+12; then, by the definition of S (see (3)), if p* € SN™+12
then p* +n* 4+ 2 € T. Thus

{nt:in' Apt e N2} C {nt:n At e M2, (Yot € S)pt + 0t +2€ T}

Let us take in (B2) n = o/, k= [Sn™2|, {m:l <k} =85n™2 {rh: 1<
k} CSnm™+2 and, for L < k, 77 [ni=m, vw=mn+z v =1"+ 2 hence
v = V,+ I n; for [ < k. Since for [ < k, 1/,+ +z=7’,+ € SN ™+12 we have

{nt:n At e™n2, Vot e S)pt +nt +2€ T}
C{nt:n aqt emo2, (VW <k)(v +nt eT)},

therefore by (B2)

{n*: 0 Aot e ™12, (Vp* € S)(pt +nt + 2z € T}
< QLT (] - 2—(i+1))|5r‘"‘2|—1’

which establishes (9).

(9) tells us how T* grows from the level n; to the level n;y; and therefore
IT* nm2f - 27™ < [, (1 — 27 0+D)ISNY2I-1 et ¢y = p(LimT*). We know
that cg > 0 and we can assume ¢g < 1. Then

—o00 < logeg < log(IT* N™2]-27™) < ) " (log(1 — 27UH1) . (IS N ™2 - 1)).
j<i

Since log(1 — z) < —1z we get

> 276+ (jsnmg) 1) < log 1

i<i Co

We_ shall dpnote 4log é by ¢, so }:j<i2‘j . (|Sﬂ "i2| — 1) < ¢, and for every j,
277(|SN™2| - 1) < ¢ hence [SN™2| <¢-2? +1. For j > ¢ we have, by our
choice of the n;’s, f(n;) >7-27 +1>¢-2/ +1>|SN™2|, hence S is almost of
width f.

Lemma 14 follows immediately from the following Lemma.
15. LEMMA: For every n € w and 0 < p < 1 there is an N > n such that, for

everyn’ > N andt C "2, thereisat' C n'9 which satisfies the following (i)-(iii).
(i) Foreach(et',{[ne€t.
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(i) For eachn € ¢, |t'M] > 27’7 . p,
(i) IfO < k < 2", myv0,..., -1 € "2, UF,.. v, €72, vF £ v for
j<l<k, n+wv€t, u=y [ nforl <k, then

Hnt:p<Qnt e™2,(VI < k)nt + o e '} < 2v'mphl,

Proof: We shall prove the lemma by the probabilistic method. Let n’ > n and
let A= {n*t €™2: y* | n et} We construct a subset A* of A as follows. We
take a coin which yields heads with probability p. For each nt € A we toss this
coin and we put 7 in A* iff the coin shows heads. We shall see that if we take
t' = A* then, for sufficiently large n', the probability that (ii) holds has a positive
lower bound which does not depend on n’ while the probability that (iii) holds
is arbitrarily close to 1. Hence there is an N and a ¢’ as claimed by the lemma.
We prove first two lemmas.

LEMMA 16: For k,n,vy,. ..,z/k_l,l/(')*, . ..,1/,':_1 as in Lemma 15 there are reals
¢1,c2 > 0 which depend only on p, n and k such that

Pr (I{”+= ndntems, /\ nt 4+t e Ax} > pk_l2nl—n) < e ?
I<k
Proof: We denote 2"'~" with m. We set ("2)I" = {71?:]' < m}. Let G be the
graph on m given by

iGj ift {nf +vi<kyn{nf +y i<k} #£0.

Obviously, each i < m has at most k? neighbors in G hence, by a well known
theorem, m can be decomposed into k? + 1 pairwise disjoint sets B, ..., Bg2
such that, for every ¢ < k2, if j,/ € B; and j # [ then jG! does not hold. Let
d< Imin{p'~t-phi<2on}=1p"""H1-p)>0.
Pr ([] <m: /\ nf e AT} >m .pk‘l)

I<k

<Pr (Ij < m: /\ nf +y e A} > m(p* +d)) since p* +d < pk-1.
1<k

(10)

Assume that
dm
2k2 42

. d
we have [{j € Bi: [\ nf + v} € A"} < |Bi|(p* + 5);
i<k

for every i < k? such that |B;| >

(11)
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then
{j<m: /\n;'+ul+€A*}
i<k
c U e Anf+reay | B
isk?, |Bi2 55 1<k i<k, |Bil< 4
hence

l7 < m: /\nf—f—uﬁeA*}I

i<k
< > lj€Bi: \nf +v € A+ > |B;|
i<k?, B> 4 I<k i<k, | Bil< 58P
d
< > BT+ + X 1B, by (11)
i<k?, |Bi|> g8 i<k?, |Bil< 757
d dm
<m(p* + o)+ (K2 +1 = m(p* + d).
<mlp” + 5) + (K + )2,C2+2 m(p” + d)

Therefore the event |[{j < m: A, 7 + v} € A"} > m(p* + d) is incompatible
with (11), so we continue the inequality (10) by

SPT( V  (es: /\nj++ul+eA*}|>|Bi|(pk+§)))

i<k?, |Bil2 74 1<k 2
(12 o
< v Pr(|{jeBi: N} +vt € A%} > |Bil(p +§)).
i<k, |Bil> 5475 1<k

For a fixed j < m the events nf + vt € A* for different I’s are independent,
hence Pr (/\l<k nf +ut e A*) = p*. For a fixed i the events Aick nj +yt e A*
for different j’s in B; are independent since, by the definition of the B;’s, if
J1,32 € B; and j1 # jo then 17; + V,J; # 17]-+2 + V{: . We have here |B;| independent
events, each with probability p*. By a formula of probability theory (see, e.g.,
the formula Pr[X > a] < e=2¢°/" in Spencer [2], p. 29)

2

Pr({j€B: \nf +vf € A} > |Bilp* +¢) < fha
k<l

and, taking € = 1|B;|d, we get

, ot e oA Kk, 4 al R}
Pr({]eBi:k/<\lnj + " € A’} > |Bil(p +§))<e zo,



Vol. 89, 1995 NULL-ADDITIVE SETS 371

Continuning (12) we get

42| By _d% _dm _43n-n
< Z ez < e Ttz < (k24 1)e” wra

i<k, |Bil 2 8 i<k?, | Bi|> 58P

Combining this with the inequalities (10) and (12) we get
Pr (I{n+ indnte™2, Ant+yfed}> p"‘12”"")
i<k

3,n'—n 39—non
< (k2 + l)e‘dTim— = (kz + l)e_%_

Since d = 1p*"~(1 — p) this proves Lemma 16.

17. LEMMA: There are c3,c4 which depend only on p and n such that

Pr( \/

+
ky"’a"()v"w"k—ly”o y~-‘;V;:_1

13 ’ /
(13) [t sn 9t ™o, (VI <K)nt 4o € A7) 2 27t
< 03(211’)2" e—042”
where k,n, Vo, ..., Vk—1,V3 ,...,Vi_; are as in (iii) of Lemma 15.
Proof: By our requirements on k, 7, g, ..., Vk—1, ug’ ooy u,j_l there are at most
2" possible k’s and 7’s and (2')2" sequences (v7,...,v;_,), while vy, ..., vk
are determined by vg,...,v;_, and n. Therefore we get, by Lemma 16,

Pr( \/

+
kg, ¥k —1,Yg ""’”:—1

(1r* :man* € ™2, < kyrt + o € 4%)] 2 279t ))

>

k,r,,uo,...,l/k_l,u:,...,u:_l
Pr (|{n+ :ndnpte "’2, (Vi< k)nt + u,"’ € A} > 2"""p’°‘1)
<aon.on.(27)EM. cle—cﬂ"'_

Proof of Lemma 15 (continued): For each n* € ™2 such that < 5+, nt € A*
if the coin shows heads and different tosses are independent, |A*["]l is a bino-
mial random variable with expectation 2 ~"p. By the central limit theorem
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of probability theory (see, e.g., Feller [1, Ch. 7]) the limit, as n’ — oo, of
Pr (|A*| > 2"""p) is f5° \/—;=7re“$2/2dx = 1, hence there is an N such that,
for every n' > N, Pr (|A*[’7]| > 2"1‘"p) > % For different € t the random
variables |A*[)| are idependent, hence

/ 1 1

*[n) n'—n il
(14) Pr(/e\t(IA M2 2v ) 2 g 2 g
7

The right-hand side of (13) clearly vanishes as n — co. Let us take N to be such
that, for n’ > N, the right-hand side of (13) is < 32", Therefore we have, by
(13) and (14),

Pr( V

k,W»Vo,-nka—l,V:,...,u:'__l
(19) (0 gt €2, (< kynt 40 € A <2 mph Y

A N > 27 mp)) > 0.
net

By (15) there is a t’ as required by the lemma.

4. Characterization of the meager-additive sets

18. THEOREM: For every X C “2 the following conditions are equivalent:
(a) X Is meager additive.
(b) For every sequence ng < m; < ng < --- of natural numbers there is a
sequence g < %1 < --- of natural numbers and a y € “2 such that, for every
z € X and for every sufficiently big k < w, there is an | € [ik,ix41) such
that « [ [ni, i) = y [ [, niga).

Proof: Throughout this proof, if x € “2U“>2, k,l € w and k < [, then z | [k,1)
will denote the sequence ¢ € '~*2 such that (i) = z(k 4 ) for all i < I — k.

(b)—(a): In order to prove (a) it clearly suffices to show that X + Lim (T) is
meager for every nowhere dense tree T'.

For a nowhere dense tree T', let (n;: i < w) be an ascending sequence of natural
numbers such that ng = 0 and, for every i € w, there is a sequence v; € ™i+1 =2
such that, for every 7 € ™2, 7 ~v; ¢ T. Let (i;: j < w) and y be as in (b); then,
by (b), X = Uy, Xx Where

Xi={x € X:(Ym 2 k)AL € [im,tm+1)) & [ [n, 1) = ¥ [ (niymigr) )
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It clearly suffices to prove that X + Lim (T') is nowhere dense.

Let 7 € ™= 2 for some m > k; we shall show that 7 has an extension which
isnot in Xp + Lim(T). Let v =v;, ~v; 41~ ~ v, ,,—1andlet p=y |
[ni,,, M, ) + v. We show that no extension z of 7 ~ p is in X + Lim(T).
Suppose 7 ~ p 9 z € Xi + Lim(T); then z = 2 + w, = € X¢, w € Lim (7).
Therefore 7 = 7, + 75 and p = p; + p2 such that m; ~ p; Qz and 7 ~ p3 Qw,
hence 72 ~ po € T. Let £ € ™=2 be such that £(j) = 0 for every j < n;_,
and let p' =& ~p, py =&~ p1, py =& ~ pa. Clearly p' = p| + ph. Since
z € X}, there is, by (b), an [ € [im,im+1) such that z | [n;, i) =y | [0, nigr)-
Since 1 ~ p1 < x we have pi [ [ni,,ni,+1) = = | [ni,,n, +1) and hence
p1 | [r,nig1) = | [, mis1) =y | [ni,nigr). Therefore, by the definition of p

and v,

y [ [, 1) + 05 [ e, nugn) = o) 1oy niga) + 05 1 g nigr) = 0 1 oy niga)

=y | [n, 1) +u,

hence pf | [n;,n141) = . By the definition of v, 75 ~ p2 ¢ T, contradicting
To~py €T,

(a)—(b): Let X be meager-additive. Let (n;: ¢ < w) be an ascending sequence
of natural numbers. Let B = {x € “2: Vj(3k € [nj,n;41))z(k) # 0} and
T ={z [ n:z € B,n € w}. Clearly B = Lim (T’) is nowhere dense, so X +Lim (T)
is meager, hence there are nowhere dense trees S,,, n € w such that, for every n,
Sn C Spy1 and X +Lim (T) C Unew Sn. We define now (i;: | < w), an ascending
sequence of natural numbers, and {v;: | < w), a sequence in “>2, by recursion as
follows. Let ig = 0. Given 4; let v; and ¢;4+; be such that v, € ™+1 "™ 2 and, for
every p € 12, p~w & Sy; there are such v; and 7,4, since S; is nowhere dense.
Let y € “2 be given by y [ [n;,,n4,,,) = v for every | < w. We shall now prove
that (i;: ! < w) and y are as required by (b).

Letx € X, soLim(z+T) = z+Lim(T) C X+Lim(T) C U, ,, Sn- Therefore,
by Lemma 7 (where we take z + T for §) there is an 5 € T and n € w such that
z+ T C S,. Let k be such that k > n and i, > length (). By z + T C S,
we have z [ n;,,, + (T N ™x+12) C S, C Sk. Thus for every p € Tl A ™rsr 2,
z [ ng,, + p € Sk, hence, by the definition of v; and y,

z f [nikvnik+1) +p [ [niun‘ik+1) 75 V=Y f [ni“nik+1)
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and therefore z | [ni,,ni, ) — ¥ | [Riy, nigy,) # 0 [ [niy,nigy, ), dee,
z| [n":k’nik+l) -yl [nikvnik+1) ¢{rl [nikanik+1): pPE T[n]}'

Since i > length (77) this can happen, by the definition of T, only if for some
ik < J <ikt1, | [nj,m541) —y I [nj,n541) is identically zero, and this is what
we had to prove.

5. An uncountable null-additive set

19. THEOREM: If the continuum hypothesis holds, then there is an uncountable
null-additive set.

Proof: Let, by CH, (f,: & < w;) be a sequence containing all corsets and let
(Ta: @ < w1) be a sequence containing all perfect trees. Let E be the set of all
limit ordinals § < w; such that, for every 0,3 < § and n < w, thereisavy < §
such that

T,CT,, TyNn"2=T,N0"2

and, for all m, |7, N™2} < max(|Ta N™2|, f5(m)).

Clearly F is closed. For every «, § < w; there is a perfect tree T such that T' C T,
TN"2=T,N"2 and, for all m < w, we have [T N™2| < max (|T, N™2|, fg(m)).
This tree T is T, for some 7 < w;. By a simple closure argument this implies
that E is unbounded.

We need now the following lemma which will be proved later.

20. LEMMA: There is an increasing and continuous sequence (6¢c: ( < wq) of
ordinals in E such that for every ( < w1, k < w and a < §; there is an ordinal
v which is good for ({, o, k), where by v is good for ((,a, k) we mean that

(i) v < 5<+11
(i) Ty C Ty, TyN*2=T,N"k2,
(iii) for all £ < ¢ such that 6; > a and for every € < ¢, there is a § < &;
such that T, C Tg C T, and T is almost of width f..
For £ < w; let 7¢ be the v which is good for (£,0,0). We choose

ne € Lim(Tye) Nnp: B < €}, and let X = {n: £ < wy1}. X is clearly un-
countable. We shall prove that X is null-additive by proving that X satisfies
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condition (c) of Theorem 13. For a given corset f, f = fe for some € < w;. Let
& < wy be such that §¢ > €. Let Z = {8 < ¢41: Tp is almost of width f.}. We
shall see that X C {n¢: ¢ < £} UlJgez Lim (Tp). Since Z and ¢ are countable,
condition (c) of Theorem 13 holds.

Let ¢ > ¢&; it suffices to prove that 7, € Lim (T;3) for some 8 € Z. € < §¢ and,
since 7 is good for a = k = 0, there is a 8 < & such that T, C T, and Tp is
of width f.. Thus § € Z and n¢ € Lim (T,¢) C Lim (7).

Proof of Lemma 20: We define (§.: ¢ < w;) as follows. 8 is the least member of
E. For a limit ordinal {, we set é; = U£<< 0¢. Since &¢ € Efor £ < ¢, alsoé; € E.
We shall now define é.4,. We shall assume, as an induction hypothesis, that for
each £ < ¢ the lemma holds. For each a < §; and k < w we shall find a v(a, k)
which is good for (¢, a, k) and we shall choose 6,41 to be the least member of E
greater than all these y(a, k)’s.

First we shall show that what the lemma claims holds for the case where (
is a successor or 0. Whenever we shall write { — 1 we shall assume that ( is a
successor. Let a < ¢ and k < w be given, and let {e,: n < w} = {e: e < §.}. We
define sequences {(an: n < w) and (k,: n < w) so that

(@) ko =k. If ( =0o0r a < §;1 then ag = a. If & > §¢_; then ap is an

ordinal which is good for ({ — 1,a,%). In any case ag < &, T,, & To and
T, N*2 =T, N*2.

(b) ant1 < éc.

() Tans C Ta.

(d) Ta,,, NF2=T, N*2

(e) Ta,,, is almost of width f .

(f) kny1 > k. and every n € T,,,, N *»2 has at least two extensions in

To,,, NEm+12,
There are indeed such sequences (an: n < w) and (k,: n < w). (a) determines ko
and ay; if @ < 81, then there is an ag as in (a) by the induction hypothesis. &¢
is in E and let us take an, €n, kn, ans1 for o, 8,7,y in the definition of E, then
6¢ € E says that there is an a,; which satisfies (b)-(e). Since T,,,, is perfect
there is a k,41 as in (f).

Let T = N,.c, Ta.- By (¢), (d), (f) T is a perfect tree, hence it is T, for
some v < wj. Since T, and therefore also v, depend on « and k, we denote v by
Y(o, k). As is easily seen Tya k) C Tos Ty(ar) N k9 = T, N *2, and, for every
€ < 8¢, Tyiak) € Tay,, C T, where [ is such that € = ¢;. This means that (iii)

new
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of (16) holds for £ = (. We shall have to show that (iii) holds for £ < ¢ and to
deal with the case where ( is a limit ordinal.

If ¢ is a limit ordinal let ({»: 7 < w) be an increasing sequence such that 6., > o
and |J,, ., ¢n = . We construct the sequences {an: 7 < w) and (kn: n < w) as
in the case where ( is a successor, except that (a), (b), (e) are replaced by

(@) ko=k, ag=a.

(b") an < bc,.

(e') an41 is good for ((n,a, k).
By the induction hypothesis that the lemma holds for the (,,’s there are indeed
such sequences (an:n < w) and (kn:n < w). Let T =, ., Ta,. As above, T is
a perfect tree and T = T (a,k), Ty(ak) C Ta and Ty r) N2 =Ty N k2.

We shall now see that for both cases of ¢ with which we are dealing, (iii) holds
for £ < ¢. If { is a successor then £ < { — 1 and, since ap is, by (a), good for
((—1,0,k), there is a § < 8 such that T,,, C T C T, and T} is almost of width
fe. Note that if @ < §;_1 then, by the induction hypothesis, we have a v < &,
which is good for (¢, a, k), and if ¢ = 0 then (iii) holds vacuously, hence we may
assume that ( > 0 and o € [6¢—1,6;). Since Ty(ak) € Tog, B is as required by
(iil). If ¢ is a limit ordinal, then £ < (,, for some n < w. Since a,4; is good for
(n, then there is a 8 < 6¢ such that T, € T C T, and Tj is almost of width
fe- Since Ty(4 ) € Ts,,,» B is as required by (iii).

The only case left is that where ( is a limit ordinal and £ = ¢ in (iii). Since
a,e < ( also a,e < ¢, for some n < w. ap41 is good for (,, hence there is
a B < 6, such that To,,., C T C T, and Tp is almost of width f.. Since
Tyak) € Ta,,, and (, < (, B is as required by (iii).
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