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ABSTRACT 

It is proved that  every null-additive subset of ~2 is meager-additive. Sev- 

eral characterizations of the null-additive subsets of w2 are given, as well 

as a characterization of the meager additive subsets of ~2. Under CH, an 

uncountable null-additive subset  of ~2 is constructed. 

1. T h e  bas ic  de f in i t i ons  a n d  t h e  m a i n  t h e o r e m  

1. Definition: (1) We define addition on ~2 as addition modulo 2 on each compo- 

nent, i.e., if x ,y ,z  E ~2 and x + y = z then for every n we have 

z(n) =x(n)+y(n)  (mod2) .  (2) Fo rA ,  B C _ ~ 2 a n d x E ~ 2 w e s e t x + A = d f  

{x + y: y E A}, and we define A + B similarly. (3) We denote the Lebesgue 

measure on ~2 by #. We say that  X C_ ~2 is n u l l - a d d i t i v e  if for every A C_ ~2 

which is null, i.e. #(A) = 0, X + A i s n u l l t o o .  (4) We say that  X c_ ~2 is 

m e a g e r - a d d i t i v e  if for every A c_C_ ~2 which is meager also X + A is meager. 

2. THEOREM: Every null-additive set is meager-additive. 

3. Outline and discussion: Theorem 2 answers a question of Pawlikowski. It  

will be proved in Section 2. In Section 3 we shall present direct characterizations 
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of the null-additive sets, and in Section 4 we shall do the same for the meager- 

additive sets. 

It  is obvious that  every countable set is both  null-additive and meager-additive. 

Are there uncountable null-additive sets, and even null-additive sets of cardinality 

2 ~° ? It  will be shown in Section 5 that  if the continuum hypothesis holds, then 

there is such a set. Haim Judah has shown that  there is a model of ZFC in which 

all the null-additive sets are countable, but there are in it uncountable meager- 

additive sets. This is the model obtained by adding to L more than R1 Cohen 

reals. In this model the Borel conjecture holds, and therefore every null-additive 

set is strongly meager and hence countable. On the other hand, in this model 

the uncountable set of all constructible reals is meager-additive. 

2. T h e  p r o o f  o f  T h e o r e m  2 

4. Notation: (1) we shall use variables as follow: i , j , k , l , m , n  for natural  

numbers, f ,  g, h for functions from w to w, r/, ~, v, a, v for finite sequences of 

O's and l 's ,  x, y, z for members of ~2, A, B, X, Y for subsets of ~2, and S, T for 

trees. (2) ~>2 = Un<~ n2- We shall denote subsets o f~>2 by U, V. For ~/E ~>2, 

U C_ ~>2 and x E ~2 we  shall write r /+  x for 7/+ x r length (r/), and U + x for 

{~? + x: r/ E U}. (3) For r/, v E ~>2 we write r/ <~ v if v is an extension of r/. 

(4) A tree for us is a nonempty subset of ~>2 such that  

(a) if r / ~  v and v E T then also r/E T, and 

(b) if r /E T and n > length (~/) then there is a v of length n such that  r / ~  v 

and v E T. 

(5) For a tree T, L im(T)  = {x E ~2: for e v e r y n  < ~ we have x r n E T}. 

(6) A tree T is said to be n o w h e r e  d e n s e  if for every ~ E T there is a 

T E ~>2 such that  77 ~ T and T ~ T. A set B __ ~2 is nowhere dense if 

B C_ Lim (T) for some nowhere dense tree T. (7) For every x, y E ~2 we write 

x = y i f x ( n )  = y(n) for all but finitely m a n y n  < w. For A C ~2, A nn =dr 

{y E ~2: y -- x for some x E A}. (8) V Iv] =dr  {T E U: r ___. /2 or v _~ r} (read: 

U through v). (9) U (~) =dr {r  E ~>2: v ,', r E U} (read: U above v), and for 

r/E ~>2 we define r/(k) =dr (r / (k+i): i  < l e n g t h ( r / ) - k ) .  (10) For v , r /E  ~>2U~2 

we write v " n  r / i f  length (v) = length (r/) and v(i) = r/(i) for every n _< i < 

length (v). For S C_ ~>2 U ~2 we define S ~'~ = {v: v ~,~ 7/for some r/E S}. 
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5. Outline of the proof: Let X C_ ~2 be null-additive. It clearly suffices to prove 

that for every A C_ ~'2 which is nowhere dense, X + A is meager. Given a nowhere 

dense tree S we shall give a condition which is, as we prove in Lemma 6, sufficient 

for a tree T to be such that T + S is nowhere dense. Then we shall split X into a 

union X = (.Ji°°__l Xi such that,  for each i, Xi C_ Lim (T~) where Ti is a tree which 

satisfies that condition. Thus for a nowhere dense S, each set Xi  + Lim (S) C_ 

Lim (Ti + S) is nowhere dense, hence X + Lim (S) C_ [.Jill Lira (T~ + S) is meager. 

6. LEMMA: Let T be a tree such that 

(a) T is nowhere dense. 

(b) f = fT is the function from a~ to w given by f (n )  = min{m : for every 0 E 

'~2 there is a T E m2 such that O <3 T and T ~ T}.  Thus for every sequence 

O of length n there is a witness of length <_ f (n )  exemplifying that T is 

nowhere dense. Obviously, for every n < w, f ( n )  > n, and if  n < m, then 

f (n )  <_ f (m) .  

Let g be a function from w t o w .  We can find ~ = (n~: i < w) a n d S '  = 

(n~: i < w), increasing sequences of natural numbers such that 

(c) fg(1)(ni) <_ n~ < ni+l for every i < w, where fm  denotes the m-th  iteration 

o f f .  

Then for every tree S which satisfies 

(d) S is of width (~' ,g),  i.e., for every i < w we have ]~:2 n S[ <_ g(i), 

T + S is nowhere dense. 

Proof: Let 0 E n, 2. We shall show the existence of an 0' E '~ 2 such that  0 _<3 0' 

and 0' ~ T + S. 

By (c) there is a sequence t oo , . . . ,  mg(i) such that mo = ni, f ( m k )  <_ mk+l for 

0 < k < g(i) and mg(i) = n~. Let (rk: k < ki) enumerate the set n~2 N S. By (d), 

ki <_ g(i). We define 0k E m~2 for 0 < k < ki by recursion as follows. Start with 

r/o = ~. Given Yk E '~k2, for k < ki, we shall define ~?k+l E m~+12 so that  for no 

extension 77' E n',2 of Ok+l shall we have y '+rk  E T. We have Ok +Tk I mk E m~2 

and, by the definition of f and by the choice of the mk's, Ok + Tk I mk has an 

ex tens ionu E m~+12 such that u ~ T. If we take0k+l  = u + T k  I m k + l  then 

0k+rk Imk <3 u implies 0k <3 0k+l ,  ~/k+l E m~+12 and 0k+l+Tk Imk+l  = u ~ T, 

and therefore for every 0' E n~2 such that  0k <3 ~/' we have 7/' + Tk ~ T. Let 

0' = ~?k,, and assume that  0' E T + S. Then, for some k < ki _< g(i), we have 

~/' + r~ ~ T, contradicting our choice of ~?k+l = 0 ~ I m~+~. Thus ~7' ~ T + S. 
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7. LEMMA: I[ S, Ti, i E w are trees and Lim(S) C lJie~ Lim (T/), then for some 

7/E S and j E w, S [nl C_ Tj. 

Proo~ Suppose that this is not the case, i.e., for every 17 E S and i < w there is a 

such that  ¢ E S ['l and ~ ~ T~. Once there is such a ¢ we can assume that ~ ~ 

and length (¢) > length (~). We define now, by induction on i, ~i and ki so that  

ki = length(rli), ko = 0, r/o = (), r/i <a_ 77i+1, ki < ki+l, ~i+1 E S and 71i+1 ~ Ti. 

Let y = [Jie,orli. Since ~i E s for every i E ~o, y E Lira(S) c_ [.Ji~,Lim(Ti), 

hence for some j E w, y E Lira (Tj). However, y I kj+l = r~/+l ~ Tj, contradicting 

y E Lira (Tj). 

8. L~.MMA: Let S and T be trees such that Lim (S) c_ (Lira (T)) nn. Then there 

are k < ~o, ~, u E k2, ~ E S such that S (v) C_ T(~). 

Proof'. For n < w, a l ,a2  E n2 and a2 6 T we define 

To1,,, =d~ {r: r <1_ al} tO {al ~" r: a2 " r E T}. 

(This is the tree T [aa] with "a2 replaced by al" . )  Clearly 

(1) (Lim (T)) ~n = [.J Lim (T~I,,=). 
n<w, al,o'2E"2, a2qT 

Since there are only countably many T~,,~'s in (1), there are, by Lemma 7, a 

E S and j < ~ such that  Sg] C To~,o2. Clearly there is an 77 with ¢ _<1 r~ and a 

v with length (v) = length (rl) such that S(") C_ T(~). (If ff __ al  then r /=  al  and 

u = a2, else a l  S ~ and then ~ = ff and u = a2 ~" ff I [length (¢), length (a2)).) 

9. LEMMA: Let X be a null-additive set. Let T be a tree such tha t / , (Lim (T)) > 

0. There is a tree T* such that #(Lim (T*)) > 0, moreover for every rl E T* also 

#(Lim (T*[V])) > 0, and ((~'2 \ ( L i m  (T)) fin) + X) N Lim (T*) = 0, and then 

x =  U 
nET*, length ({)=length (z/). 

where Yg~ = {x E X:  ( ,~ x (length({)} + T*M C_ T}. 

Proof." Since #(Lira(T)) > 0 then, as easily seen, t~((Lim(T)) fi") = 1, hence 

#(~'2 \ ( L i m  (T)) fin) = 0. Since X is null-additive also #(X + (~'2 \ (L i ra  (T))fin)) 

= 0. Hence there is a tree T* such that  

#(LimiT*)) > 0 and ( X + (°'2 \ ( L i m  (T))fi"))n Lim (T*) -- 0. 
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Without loss of generality we can assume that T* has been pruned so that, for 

r / •  T*, #(Lim (T*[~])) > 0. 

Let x • X; then 

~2 \ ( x  + (Lim (T)) ~ )  = x + (~2 \ ( L i m  (T)) ~ )  _C X + (~2 \ ( L i m  (T))fin). 

Hence (~2 \ ( x +  (Lim (T))fin))NLim (T*) _C ( X +  (~2 \ ( L i m  (T))fin)MLim (T*) = 

0, i.e., Lim (T*) C_ x+(L im (T)) fin, and therefore Lim (x+(T*)) = x + L i m  (T*) C_ 

(Lim(T)) ~". By Lemma 8 there are ~? • T* and u • length(v)2 such that 

x0e-gth (,7)) + T*(v) C_ T (v). Let ~ = ~ + v; then ¢ + ~? = v and therefore 

~ x0e~gth (v)) + T*[v] C_ T [~] C_ T, hence x • yX¢. 

10. LEMMA: L e t X  benu11-additive, and le t~  = <hi: i < w), W = <n~: i < w) be 
• i 

' and ' + ~ • 2 n~ < ni+l; then we can represent such that, for every i < w, nl < n~ n i 

X as Um<,~ x m  such that, for each m, for some real am • (0, 1) and S,n of 

width (~', g~,~ ) we have Xm C_ Lim (Sin), where for every real a • (0, 1), g~ is the 

function on w given by g~(O) = 1, ga(i) = max(l,  int(log2(a)/log2(1 -- 2-i))) for 

i > 0, and for a real d, int(d) is the integralpart old. 

! I 

Proof'. Since n{ + i . 2  n~ _< ni+l we can fix for each 0 < i < w a sequence 
I i 

(u~,~: 7- • n,2 / of pairwise disjoint subsets of the interval [ni,ni+l ) having i 

members each. Let B C ~2 be given by 

B = {y e (Vj > 0)(3k • uj, rn;) y(k) = 1}. 

B is clearly a closed subset of ~2, hence for T = {y r n: y E B A n E w} 

S = Lim (T). 

The properties of T in which we are interested are 

(B0) T D n'2. 

(Sl)  For each ~? • T n '~2 we have IT [nl n '~'+121 = 2(n'+~-'q)(1 - 2-4). 

(B2) If~,v0,  . , V k - l • ' q 2 ,  v+ , . .  + • . . ,vk_ 1 • n'+~2, ~?+vl • T, ut ~ v + for 

l < k and v0, . . . ,  vk-1 is with no repetitions, then 

- -  n .  _ t 

I{~?+: ,7 <~ 7 + E n'+12, (VI < k)(,7 + + v + E T)} I _< 2 ,+1 n, (1 - 2- ' )  k . 

(B3) For every y E 'q 2 we have: y r ni E T implies ~? E T. 

These properties can be established by an obvious counting argument. 
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By (B0), (B1) and (B3) we have 

0 # ( L i m ( T ) ) = #  x E ~ 2 : x  t n ~ e T  

= # ( { x  E ~2: x r nz E T } ) .  f i  # ({x  E ~°2: x I n i+l  E T})  

= 1. f i  [TMn'+I21/2~'+I 
i = 1  [TMr~'+~2l/2n' = I - I ( 1 - 2 - / )  > O. 

i=1 

For the T which we constructed and the given X,  let T* and Yn,; = yX¢ be 

as in L e m m a  9. For p E length (n) 2 let Yn,¢,p = {Y E Yn,¢: Y r length (~/) = p}. 

Clearly 

(2) x = U 
v e T * ,  length (V)----length (()----length (p) 

Since there  are only countably  m a n y  Yn,¢,p's they can be taken to be  the X m ' s  

we are looking for, provided we show tha t  every such Yn,¢,p is a subset  of Lim (S) 

for some tree S of width  (~',  g~ / fo r  some real 0 < a < 1. We shall see tha t  this 

is indeed the case if we take S = {y r m: y E Yn,¢,p, m < w} and a = # ( T ' M ) ;  

a > 0 by what  we assumed abou t  T*. As, obviously, Yn,¢,p C_ L i m ( S ) ,  all we 

have to do is to show tha t  S is of width  (W, g~>. We fix a j E w. 

We can choose a set W C S N n~+l 2 such tha t  the function mapp ing  rl E W to 

rl r n~ is one to one and onto S Cl n~ 2. 

We fix now ~, ¢, p and denote Yn,¢,p by Y and the length of rh ~, p by n. Let 

z E ' 2  be  such tha t  z r n = ~ + p  and z(i) = 0 for i > n. Then  for every y such 

tha t  y r n = p we have y + z = ~ ,-. y<~). Therefore,  by the definition of Y we 

have 

Y = { y E ~ 2 : y r n = p ,  ( ¢ , - , y l ' ~ ) ) + T  *MC_T}  
(3) 

= { y E ~ 2 : y  I n = P ,  y + z + T  *M C_T}; 

' ' (T may  be for every y E Y there is a unique T E W such tha t  r I nj = y [ nj 

y [ n j+l) .  Clearly [W I = ISAAC21 and we denote [W I by s, so it suffices to prove 

' i hence 8 = 1, so i < n, then  the only m e m b e r  of S M 'b 2 is p [ n j  s _< g~(j) .  I f  nj  _ 
/ s < g~(j). We shall now deal with the case where nj  > n. Let TO,. . . ,  T8--1 be  

the members  of W. For m < s, rm = y r nj+l  for some y E Y, hence, by (3), 
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T m +  z + T *[~] C_ T and therefore (z + T *[~]) M '~J+12 C_ rm + T.  

for every T E W we have 

(4) z+T *[']Mnj+12C N Tm+T. 
r n < s  

Let us find out the  size of Nm<8(rm + T).  Let a E n}2, and we shall ask how 

m a n y  member s  T of Nm<8(Tm + T)  extend a .  Now T E rm + T for each m < s 
! iff r + ~-m E T for each m < s. If, for some m < s, a + rm r nj ~ T,  then  also 

~- + 7-m ~ T,  hence a has no extension in Nm<~(~-m + T) .  If, for every m < s, 

' ' and v + = Tm), a + 7m r nj  E T,  then  by (B2) (where z] = a ,  Vm = Tm F nj  

since Tm [ nj' ~ ~'I I nj' for m ¢ l, the number  of 7 's  such tha t  a _<~ T E n~+12 and 
n t t 

r + 7m E T for every m < s is 2 J+l-~J (1 - 2 - J )  ~. Since there  are 2n~ different 
! 

a ' s  in nJ2 we have 

(5) m~< (~'m q- T)  < 2 nj+~ • (1 - 2 - J )  s. 

On the other  hand,  since # ( T  *Enl) -- a, T*[,l f3 ~J+~ 2 has a t  least a .  2 nj+l mem-  

bers, and so has z + T *Iv] f3 ~i+~2. Compar ing  (4) wi th  (5) we get 

1 _< - 2 - J )  i .e. ,  a _< (1 - 2 - J )  8, l o g : ( a )  _< s .  l og2(1  - 

_< log2(a)/log (1 - 2 - J ) .  

11. P r o o f  of  Theorem 2: Let X be null-additive. As ment ioned in subsection 5, 

it suffices to show tha t  for every nowhere dense tree T, X + Lim (T) is meager.  

' = fg'/('+~)(i)(ni) + 1 Let f = fT  as in L e m m a  6. Define by recursion no = 0, n i 

, 2~  and ni+l : n i q- i" q- 1. By  L e m m a  10, X C Um<~ Lira (Sin), where for some 

am E (0, 1) Sm is of width  (~' ,  g~.~ >, hence it suffices to  show tha t  if S is of  width  

(~', g~> for some a E (0, 1) then  Lim (S) + Lim (T) = Lim (S + T)  is meager .  Let  

j be such tha t  ~ < a and let ~/1, . . . ,~k be all the member s  of S of length 

n~. Then  S = U~=I s[,,] and Lim (S) -- U~=I Lim (S["]).  Therefore  it suffices to 

prove t ha t  for 1 < l < k, Lira (St) + L i m ( T )  is meager  and this follows once we 

show tha t  Sl + T is nowhere dense. To prove this we show tha t  the requirements  

of L e m m a  6 hold here for Sl, T. (a) and (b) hold by our choice of T and f .  Let  g 

be defined by g(i) = 1 for i < j and g(i) = g~(i) for i _> j .  Now we shall see tha t  

' = fg~/('+')(i)(ni) + 1 > f ( n i )  + 1 = fg(i)(nl)  + 1, (c) holds. For i < j we have ni 

' = fg~/(,+~)(O(n~) + 1 > since f ( n )  >_ n for every n, and for i _> j we have n i 

fg"(i)(nl)  + 1 = p ( O ( n i )  + 1, since a - j-#-7 - i--~ > 1 > 1 and the m a p  a ~ ga(i) is a 

363 

Since this holds 
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decreasing function of a. Thus for every i < w, fg(O(ni) <_ fg~/('+')(i)(ni) <_ n~. 

(d) of Lemma 6 holds since, for i < j ,  In~2 n Stl = 1 = g(i) and, for i _> j ,  

1":2 n Stl _< In;2 n S I < g~(i)  = g( i ) .  

3. C h a r a c t e r i z a t i o n  of  t h e  nu l l -add i t ive  sets  

12. Definition: By a corse t  we mean a non-decreasing function ] from w to 

¢v \{0}  which converges to infinity (i.e., for every n < w, ] (m)  > n for all 

sufficiently large m). For a corset f ,  we say that  a tree T is of  w i d t h  f if for 

every n < w, IT n n2[ _< f(n);  and we say that  T is a lmos t  of  w i d t h  f if 

[T N n21 <_ f (n)  for all sufficiently large n. 

13. THEOREM: For every X C_ ~2 the following conditions are equivalent: 

a. X is null-additive. 

b. For every corset f there is a tree S of width f such that X C_ (Lim (S)) tln. 

c. For every corset f there are trees Sin, m < w, which are almost of width 

f such that X C_ Um<~(Lim(S,~)) fin. 

d. For every corset f there are trees Sin, m < w, of width f such that 

X C_ Um<~ Lira (Sin). 

Proo~ (b)~(c)  is obvious. 

(c)~(d):  Let S be a tree almost of width f .  Then for some k we have [TA~2[ _< 

f (n)  for all n _> k. By (1) of Lemma 8, 

(Lim (S))fin = U Lim (S-1,~2)" 
al ,a2 E~ 2, a2ES 

Each S ~ , ~  is of width f since, for n _< k, we have IS~,,~2 n~21 = 1 and for n > k 

we have iS~1,~2 n~2[ _< i S n " 2  t < f (n) .  Therefore, i f X  C_ Um<~(Lim(S~)) fi" as 

in (c) then each Sm can be replaced by countably many S~a ,,2's and (d) holds. 

(d)-*(b): Let f be a corset. We can easily define by recursion a sequence 

0 = no < nl < . . .  of natural numbers and a corset f* such that  for all j < w 

and m > nj+l  we have (j + 1). 2nJ • i f ( m )  < f (m) .  

For a given corset f ,  if X satisfies (d) let S~, m < w, be as in (d) for the 

corset f*. We construct now a set S c_ ~>2 by defining S n "~2 by recursion on 

m. S O 02 = {()}. For ni < m <_ ni+l let 

S n ' 2 = { ~ / • m 2 : 7 /  t n i • S n n ' 2 a n d T / • S ~  ~n~ for s o m e j < i V j = 0 } .  
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S can be easily seen to be a tree, and clearly (Lim (S)) nn _D Un<~ Lim (S*) _D X. 

For m < nl easily IS N'~21 < f (m) ,  for n~ _< m < n~+l, i > 1 we have tS M '~21 < 

Ej_<i IS; ~n~ M m2] ---- E j < i  2nj IS; M m21 < (i -t- 1)" 2 nj" f*(m) < f (m) ,  thus S is 

of width f .  

(d)~(a) :  Assume now that (d) holds for X, and let A C_ ~2, #(A) = 0; we 

shall prove that #(X ÷ A) -- 0. First we shall mention two lemmas from measure 

theory the proof of which is left to the reader. 

LEMMA A: For every tree T with #(Lim(T)) = a > 0 and e > 0 there is an 

N E w such that for every n >_ N there is a t C_ n2 M T such that It[ _> 2n(a - e) 

and, for each ~ E t, p(Lim (TN)) > 2-n(1 - e). 

Using Lemma A one can prove 

LEMMA B: For every tree T with #(Lira (T)) > 0, every e > 0 and every sequence 

(ei: 0 < i < w) of positive reals there is a subtree T' of T and an increasing 

sequence (ni: i < w) of natural numbers such that no = 0, #(Lim(T'))  > 

#(Lim (T)) - e  and 

(6) f o r i > O a n d e v e r y T 1 E n ' 2 M T  ', #(L im(T ' [ " ] ) )>2 -n~(1 -e i ) .  

By basic measure theory #(A nn) = 0, so there is a tree T such that  #(Lira (T)) 

> 0 and Lim(T) n A nn = 0 hence (Lira(T)) fin N A = 0. Given e < #(Lim(T)) 

and (ei: i < w) as in Lemma B we obtain a subtree T' o f T  as in that  lemma with 

#(Lira (T')) > 0. The union of sufficiently many "finite translates" of T', i.e., 

trees T' as in (1) of Lemma 8, is a tree T" satisfying (6) with #(Lim (T ' ) )  > O" 170"2 

_1 (Lim (T")) nn = (Lim (T')) ~n C (him (T)) nn and hence Lim (T") N A C 
2 • _ _ 

(Lim (T)) nn N A = 0. We take now ei = 1/4(i + 1) 3 and take T to be T" and we 

get #(Lira (T)) > ½ and 

(7) f o r i > O a n d e v e r y ~ E n ' 2 n r ,  ~(Lim(T['7]))>2 -'~' 1 4 ( i + 1 )  a . 

Let f be the corset given by f (n)  = i + 1 for ni _< n < ni+l. By (d) there are 

trees S,~ of width f such that X C_ Um<~o Lira (Sin). To show that  #(X + A) = 0 

it dearly suffices to show that,  for every tree S of width f ,  #(Lira (S) + A) = 0. 

We define 

T* = {W E ~>2: v + 7/E T for every v E S of the same length as W}. 
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We do not show that T* is a tree but obviously, if ~ ~ r/ E T*, then ~ E T*, 

thus Lim (T*) is defined. If #(Lim (T*)) > 0 then, by a well-known property of 

the measure, #(Lim(T*) fin) = 1, hence in order to prove tt(Lim(S) + A) = 0 it 

suffices to prove (Lim (S) + A) n (Lim (T*)) nn = 0. Assume y E (Lim (S) + A) M 

(Lim(T*)) ~". Since y E (Lim(T*)) ~ there is a y' E ~°2 such that y'(n) = y(n) 
for all sufficiently big n's and y' E Lim(T*). Since y E Lim(S) + A there 

is an x E Lim(S) such that y + x  E A, hence y + x  ~ (Lim(T)) fin, hence 

y l + x  ~ Lim(T). Therefore, for some n, yl r n + x  r n ~ T, hence, by the 

definition of T*, y~ I n ~ T* contradicting y~ E Lira (T*). 

We still have to prove that #(Lim(T*)) > 0. We shall prove, by induction on 

i, that 

1 
(8) n~ ___ n _< ni+l ~ I(T'- T*) n n21 _< 2 n. E 4(j + 1) 2. 

j<i  

Once we establish (8) we notice that since 

Lim (T ) \L im(T*)  = U L i ra (T) \{x  E ~2: x In  E T*}, 
n ( o a  

and the set Lim (T) \ { x  E ~2: x I n E T*} is increasing with n hence 

p(Lim (T) \ Lim(T*)) = limoo #(Lim (T) \ { x  E ~ 2 : x  In  E T*}) 

< 2- I(T \ T*) n 

n 

lira ~ 1 
~--o~__0.= 4(j + 1) 2 

o~ 1 ~2  

= E 4 ( j + I )  2 -  24 
j=O 

1 #(Lim(T*)) > 0. and since p(Lim (T)) _> 

1 

2 

To prove (8), assume now ni _< n _< n~+l. By the definition of T* 

(T \ T*) n "2 ={r/E T n "2: (3p e S n "2)(p + v ~t T)} 

={~ E Tnn2 :  (3p E S n  n2)(rt r nl + p r n~ • T)} 

U U { ~ E T n " 2 : v I n i + p l n i E T A ~ + p ~ t T }  
pESn'~2 

C_{7/E n2:77 Fni E T \ T * }  

U U {~ IEn2:~+PE{aE"2:a[n 'ETAaCT}}"  
pEsn  r 
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Therefore 

I(T \ T*) M"21 <_ 2 n - ' ' I ( T  \ T*) nn'21 + IS Mn211{a • n2: a I nl • T A a  ¢ T}I. 

For i > 0 we have, by the induction hypothesis, 

1 
IT \ T* n ~'21 < 2 ~' 4(j 1)2" + 

j < i  

Fori=0wehave (T \T * )nn~2=0s inceno=0and0•T* .  

IS M =2 I < f ( n )  = i and j{a • n2: a [ ni • T A a ¢ T}I _< 

by (7). Thus 

1 
](T "-T*)n~2j < 2 ~ -~ '  "2hi E 

4(j  + 1) 2 
j<i 

which is what we had to show. 

n 

4(i + 1) 3, 

14. LEMMA: There is an infinite sequence 0 = no < nl  < n2 < " "  and a tree T 

such that  for every i E w we have f ( n i + l )  > (i + 1) • 2 I+1 + 1 and 

(B1) For each ~ E T M  ~,2 we have IT ["] n n,+~2[ = 2 (~,+l-n,) • (1 - 2-(i+1)). 

(B2) I [ , ,~o  . . . . .  ~k-, • ~,2, ,o+, . . . ,~+_,  • ~,+,2, , ~  ¢ ~+ [o~ j < 1 < k, 

q + L'z • T ,  uz ~_ L '+ [or l < k, then 

]{•+: • _ ~+ E n'+~2, (Vl < k)0? + + v + E T)} I _< 2 n i + l - n l  ( 1 -  2 -(i+1)) k-1 

Let (ni: i C w) and T be as in Lemma 14. As in the proof of Lemma 10 we get 

#(Lim (T)) > 0. Let T* and Y,,¢ = yX¢ be as in Lemma 9 and let Y,,¢,p, S and 

z be as in the proof of Lemma 10. All we have to do is to show that S is almost 

of width f .  Let us fix 7/, ( and p. We shall now see that 

(9) 
If y' E T*["] n n~2 then 

l{fl+: ~?' ff y+ E T* n ~'+'2}ll2 (~'+1-~') <_ (1 - 2 - ( i + 1 ) )  ISg)n'21-1, 

(a)---,(c): Most of the proof follows that of Lemma 10. We need also the following 

Lemma 14, which will be proved later. Let f be a corset. 

2 n 1 
- - + ( i + 1 ) ' 4 ( i + 1 ) ~ - < 2 n  E 4 ( j + 1 ) 2  

j<i+l 
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Let r/+ E T *['] M m+'2; then, by the definition of S (see (3)), if p+ C S Cl m+'2 

then p+ + 7/+ + z E T. Thus 

{r/+: ~/' <~ r/+ E T* M"'+'2} C_ {r/+: r/' ~ r/+ E "'+'2, (Vp + E S )p  + +~+ + z  E T} .  

Let us take in (B2) r/ = r/', k = IS N "'21, {7~: 1 < k} = S n ~,2, {T+: I < 

k} c_SM"'+12,  and, f o r l < k , ~ +  [ ni = rl, vt = vt + z, v + = T + + z; hence 

v t = v  + rn,  f o r l < k .  Since f o r l < k , v  + + z = T  + E S n m + 1 2 w e h a v e  

{r/+: r/' ~ ~/+ E "'+'2, (Vp + E S ) ( p  + + ~1 + + z E T }  

c _< e (vt < k) (C + c T)}, 

therefore by (B2) 

I{v+: _< n + e ",+,2, (Vp + E S)(p + + r / +  + z E T}I 
_< 2 - , + , - m  (1 - 2- ( i+1) )  Isn" '21- ] ,  

which establishes (9). 

(9) tells us how T* grows from the level ni to the level ni+l and therefore 

I T* n n,2[. 2-" ,  _< 1-I/<i(1 - 2-(J+1)) Isn"~21-1. Let co = #(LimT*).  We know 

that Co > 0 and we can assume Co < 1. Then 

- c ~  < logc0 _< log( iT*  N "'21 • 2 - " ' )  _< ) -~ ( log(1  - 2 - (5+ ' ) )  • (I s n ",21 - 1)).  
j < i  

Since log(1 - x) _< -½x  we get 

Z 2  -( j+2).  ( ISnm+12 I -  1) < log 1 
5<i e° 

We shall denote 4log ~o by c, so ~ j < ~ 2 - J .  ([SA n J 2 [ -  1) <_ c, and for every j ,  

2-J(IS M'iJ21 - 1) _< c, hence [S n nJ21 _< c .  2 j + 1. For j > c we have, by our 

choice of the hi'S, f ( n j )  > j -  25 + 1 > c. 2J + 1 _> IS n "J21, hence S is almost of 

width f .  

Lemma 14 follows immediately from the following Lemma. 

15. LEMMA: For every n E w and 0 < p < 1 there is an N > n such that, for 

every n ~ >_ N and t C_ "2, there is a t' C_ " '2 which satisfies the following (i)-(iii). 

(i) For each ( E t', ( r n E t. 
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(ii) For each ~ E t, lt'MI _> 2 "a'-n .p. 

(iii) I f  O < k <_ 2 '~, ~ ,Vo, . . . , vk-1  e '~2, v+, . . . ,v+_ 1 E "'2, v + # v + for 

j < l < k, ~? + vt E t, vt = v + r n for l < k, then 

1{7/+:, _~ ~/+ C "a'2, (Vl < k) 7? + + u + • t'}l <_ 2"'-rip k-1. 

Proof." We shall prove the lemma by the probabilistic method. Let n I > n and 

let A = {y+ • '¢2:~7 + ~ n • t}. We construct a subset A* of A as follows. We 

take a coin which yields heads with probability p. For each ~/+ • A we toss this 

coin and we put r/+ in A* iff the coin shows heads. We shall see that if we take 

t' = A* then, for sufficiently large n', the probability that  (ii) holds has a positive 

lower bound which does not depend on n' while the probability that  (iii) holds 

is arbitrarily close to 1. Hence there is an N and a t' as claimed by the lemma. 

We prove first two lemmas. 

LEMMA 16: For k, ~, v0,...,//k-l,/]O'k, . - .  ,/]k-'k_l ~ in Lemma 15 there are reals 

cl, c2 > 0 which depend only on p, n and k such that 

"a t - -1  t _  n t 2, A , + + . ? e Z . } l z p  k 2 n "n )<ca , - -c"2  . 
l < k  

Proof: We denote 2 n ' -n with m. We set ('a'2) [~] = {r/+: j < m}. Let G be the 

graph on m given by 

iGj  iff {rl+ +vl+:l < k } n { O +  + v + : l  < k }  ¢ ¢ .  

Obviously, each i < m has at most k 2 neighbors in G hence, by a well known 

theorem, m can be decomposed into k 2 + 1 pairwise disjoint sets Bo, . . . ,Bk2 

such that, for every i < k s, if j, l • Bi and j ¢ l then jGl  does not hold. Let 
l p 2 ~ - l (  1 d <  l m i n { p t - l - p t : l < 2  ~ } =  ~ , - p )  >0 .  

P r ( [ j  < m :  A rl+ +/]+ E Z * } [ > - m ' p k - 1 )  
l < k  (lO) [ 

_< Pr (IJ < 

Assume that  

(11) 

m: A ~+ + /]+ E A*}l > m(pk + d)) sincep k + d < p  k-1. 
l < k  

d m  
for every i _< k 2 such that lBi[ _> 2k 2 +-----~ 

we have [{J ~ B~: A o+ + v+ e A'}I < IBd(p k + d); 
l < k  
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then 

{j < m: 

C_ U {j E Bi: A rl+ + v+ E A*} 
i<_k2, IB, I_>~ t<k 

hence 

Ij<m: A ~? +.,+ e A*}I 
l<k  

<- E 
i < k  2, B" > a,',~ 

<- E 
i<k2, IBil> am 

- -  - -  2 k - ' ~ + 2  

d dm 
< m(p k + ~) + (k 2 + 1)2k~. + 2 

U Bi 
~<k2, IB, I < ~  

IjeB,: A¢+.+ eA*}l+ 
t<k i<k 2, I B d < ~  
d 

IBd(p' + ~) + ~ IB, I, 
i<k" ,  I B ~ I < ~  

= m(p k + d). 

IBd 

by (11) 

Therefore the event ]{j < m: A,<k ~+ + v+ C A*}] > m(p k + d) is incompatible 

with (11), so we continue the inequality (10) by 

< Pr ( V ([{jE Bi: A ~+ +v+E A*}I > ] Bi](pk + ~))) 
i<k~ ,  iBil > a,,~ l < k  

(12) 
-< E ( l u g . , :  + z' l > I",1(.' + 

i_<k2, [ B d _ > ~  t<k 

For a fixed j < m the events ~/+ + v + ~ A* for different l's are independent, 

hence P r ( A / <  krl ++v + E A' )  =p•. For a fixed i the events A / < , ,  + + v  + E A* 

for different j ' s  in Bi are independent since, by the definition of the Bi's, if 

jl ,j2 e B, and j l  # j2 then 7/+ +vt  + ¢ y+ +v+12" We have here ]Bi] independent 

events, each with probability pk. By a formula of probability theory (see, e.g., 

the formula Pr [X > a] < e -2a2/n in Spencer [2], p. 29) 

k<l 

and, taking e = ilBdd, we get 

Pr {j e Bi: A ~+ + v+ e A*}l > lB, l(pk + ) < e- 
k<l  
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Continuing (12) we get 

< _ d 2 i B i l  _ _ _ _ _  

E + -< E + 
_ B "" d m  + <k2' IB+I>++--~+2 +<- k2, + --<2~-;r~ 

d m  d 3 2 n  I - - n  

< (k 2 + 1)e- - - ~ + ~  

Combining this with the inequalities (10) and (12) we get 

n r Pr([{~+:r]___r/+E 2, /\¢+/]t~Z}l_>;k-12 ~'-~) 
l<k 

d 3 2 n / _ ~  d 3 2 _  ~ I 

< (k 2 + 1)e-4+--;r;-T+ ~ = (k 2 + 1 ) e - ~ .  

Since d = ½p2~-1(1 - p )  this proves Lemma 16. 

17. LEMMA: There are c3, c 4 which depend only on p and n such that 

(13) 

Pr( V 
+ + 

k ' ~ ' v 0 " " ~ v k -  1 ' g 0  " " ~ v k - 1  

< C3(2n')2~e-C42"' 

~'2, (Vl < k) ~/+ + v + E A*}[ >_ 2n ' -np  k - l )  

where k, ~7, uo,. • . , / ] k - - l ,  Y0+, . -  " ,  /]-t-k_1 are&sin (iii) of Lemma 15. 

Proof: By our requirements  on k, 7/, Uo,. • •, uk-1, u+, .  . . ,  uk_ 1 +  there are at most  

2 n possible k's and z}'s and (2n') 2" sequences (u+ , . .  + • , uk - 1), while v0, • • •, vk-  1 

are de termined by u + , . . . ,  vk_ 1 +  and n. Therefore we get, by L emma  16, 

Pr( V 
+ v +  

o, , )) ( { { ¢ :  ~ ~ ¢ e 2, (vl < k) ~+ + ~/+ e A'l{ > 2 ~ -~pk- ,  

E 
+ + 

k~,vO,...,vk-I ,V 0 ~...,Vk_ 1 

( ) Pr I{¢: v -~ v+ • 2, (vl < k) v+ + ~,+ • A*}I _> 2"'-"p ~-~ 

n ! 
_< 2" • 2 ~ • (2n') (2~) • cxe -c22 . 

Proof of Lemma 15 (continued): For each ~/+ E n'2 such that ~} _ ~7 +, 7} + E A* 

if the coin shows heads and different tosses are independent, IA*[V]l is a bino- 

mial random variable with expectation 2n'-"p. By the central limit theorem 
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of probability theory (see, e.g., Feller [1, Ch. 7]) the limit, as n' --~ c¢, of 

Pr ([A*N][ > 2n'- '~p)is  f o  1 _-~2/2.,_ _ ~ ux = 1, hence there is an N such that, 
1 for every n' > N, Pr ([A*['fl[ > 2n'--np) > ~. For different ~/ E t the random 

variables [A *[']] are idependent, hence 

1 1 
(14) Pr ( A  ([A*[~][ > 2n'-nP)) > 3-H > - -  

~Et -- -- 32"" 

The right-hand side of (13) clearly vanishes as n ~ oo. Let us take N to be such 

that, for n' _> N, the right-hand side of (13) is < 3 -2~. Therefore we have, by 

(13) and (14), 

Pr( V 
+ + 

(lS) (t{7/+ : 7/_<3 7/+ E ~'2, (Vl < k) y+ + v + E A*}I < 2'¢-'~p k- l )  

^ A( IA* I ' I I  _> 2n'--np)) >0. 
,/Et 

By (15) there is a t' as required by the lemma. 

4. C h a r a c t e r i z a t i o n  of  t h e  m e a g e r - a d d i t i v e  se ts  

18. THEOREM: For every X C ~2 the following conditions are equivalent: 

(a) X is meager additive. 

(b) For every sequence no < n l  < n2 < ".. o f  natural numbers  there is a 

sequence io < il  < . . .  o f  natural numbers  and a V E ~2 such that, for every 

x E X and for every sufficiently big k < ~, there is an 1 E [ik, ik+l) such 

that  x r [nl,nl+l) ---- y r [nt, nt+x). 

Proo~ Throughout this proof, i fx  E ~2U~>2, k , l  E w and k < l, then x r [k,l) 

will denote the sequence ~ E l-k2 such that ~(i) = x ( k  + i) for all i < l - k. 

(b )~(a ) :  In order to prove (a) it clearly suffices to show that X + Lim(T) is 

meager for every nowhere dense tree T. 

For a nowhere dense tree T, let (ni: i < w) be an ascending sequence of natural 

numbers such that no = 0 and, for every i E w, there is a sequence vi E '~+1-n~2 

such that, for every T E '~'2, T ~ Ui ~ T. Let (ij: j < w) and y be as in (b); then, 

by (b), X = Uke~ Xk where 

Xk = {x E X: (Vm >_ k)(31 E [ira, ira+l)) x [ [hi,hi+l) = y [ (n~,nt+l)}. 
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It  clearly suffices to prove tha t  Xk + Lim (T) is nowhere dense• 

Let v E ' ~  2 for some m _> k; we shall show tha t  r has an extension which 

is not in X k  + L i m ( T ) .  Let v = v/= ~, v /~+l  . . . . .  v/ , ,+~-i  and  let p = y I 

[ni~, ni,,+~) + v. We show tha t  no extension z of r ~, p is in Xk + Lira (T).  

Suppose r , - , p _ < a  z E X k + L i m ( T ) ;  t h e n z  = x + w ,  x E Xk, w E L i ra (T) .  

Therefore  r = r l  + r2 and p = Pl + P2 such tha t  r l  ~" Pl ~ x and r2 ~ P2 <~ w, 

hence r2 ~, P2 E T .  Let  ~ E n '=2  be such tha t  {( j )  = 0 for e v e r y j  < hi=,  

and let p' = { , - , p ,  p~ = { ~ ,p~,  p~ = { ~ ,  P2. C l e a r l y p '  = p ~ + p ~ .  Since 

x E Xk there is, by (b), an  l E [i,~, ira+l) such tha t  x I [n t ,n l+l )  = y [ [nl, nt+l) .  

Since r l  ~, Pl ~ x we have P'I I [n~=,ni~+l)  = x ~ [n~=,ni=+l)  and hence 

pl ~ [nt, n~+l) = x I [nt, nt+~) = y I [nt, n~+l). Therefore,  by the definition of p 

and ~, 

y r + I [nt ,nl+l )  = p.~ t [nt ,n/+l)  + p~ I [nt ,nl+l)  = p' I [n , ,nt+l )  

= Y I [nt, n t+ , )  + t,t, 

hence p~ I [n l ,n l+l )  = Yr. By  the definition of vl, r2 ~', P2 ~t T,  contradic t ing 

r2 ~, p2 E T .  

(a)--+(b): Let X be meager-addi t ive .  Let  (ni: i < w) be  an ascending sequence 

of na tura l  numbers .  Let B = {x E "2:  V j ( 3 k  E [ n / , n j + l ) ) x ( k )  • 0} and 

T = {x [ n: x E B,  n E co}. Clearly B = Lim (T) is nowhere dense, so X + L i m  (T) 

is meager,  hence there are nowhere dense trees Sn, n E 0a such tha t ,  for every n, 

Sn C_ Sn+l and X + L i m  (T) C_ Une~, S,~. We define now (iz: l < ¢0), an ascending 

sequence of na tu ra l  numbers ,  and (vl: l < co}, a sequence in ~'>2, by recursion as 

follows. Let io = 0. Given it let vl and it+l be such t ha t  vt E '~,z+,-'~,~ 2 and, for 

every p E ~ 2, p ,-, vt ~ St; there are such vz and  il+l since & is nowhere dense. 

Let y E ~2 be given by y r [ni~, ni~+, ) = ~t for every I < w. We shall now prove 

tha t  (it: l < w) and y are as required by (b). 

Let  x E X ,  so L i m ( x + T )  = x + L i m ( T )  C_ X + L i m ( T )  C_ Une~, S~. Therefore,  

by L e m m a  7 (where we take  x + T for S) there  is an ~7 E T and n E w such tha t  

x + TM _ Sn. Let  k be such tha t  k _> n and  ik >_ length (r]). By  x + TM C_ S,~ 

we have x I n~k+~ + (T in] M '~'~+~ 2) C Sn C_ Sk. Thus  for every p E T[n] M n'~+l 2, 

x I nik+~ + P E Sk, hence, by the definition of vk and y, 

x r [ % ,  + p 1" % + , )  # vk = v t 
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and therefore x I [nik, ni~+~) - y I [ni~, ni~+~) ~ p I [nik, nik+~), i.e., 

x I [ n ~ , n ~ + ~ ) - y  I[nik,ni~+,) ¢ {p I[ni~,n~+~): p e  T[~]}. 

Since ik > length (7) this can happen, by the definition of T, only if for some 

ik <_ j < ik+l, x I [nj,nj+l) - y I [nj,nj+l) is identically zero, and this is what 

we had to prove. 

5. A n  u n c o u n t a b l e  nu l l -addi t ive  s e t  

19. THEOREM: If  the continuum hypothesis holds, then there is an uncountable 

null-additive set. 

Proof." Let, by CH, (f~: a < wl) be a sequence containing all corsets and let 

(T~: a < Wl) be a sequence containing all perfect trees. Let E be the set of all 

limit ordinals 6 < wl such that,  for every a, j3 < 6 and n < w, there is a 7 < 6 

such that 

T~C_T~, T~n~2=Tonn2 

and, for all m, IT7 n m21 _< max(iT~ n '~2[ , fz(m)) .  

Clearly E is closed. For every a, j3 < wl there is a perfect tree T such that T _C T~, 

TAn2  = T~ n~2 and, for all m < w, we have [TA m2[ <_ max ([T~ Am21, f z (m)) .  

This tree T is T- r for some 7 < Wx. By a simple closure argument this implies 

that E is unbounded. 

We need now the following lemma which will be proved later. 

20. LEMMA: There is an increasing and continuous sequence (6¢: ( < wt) of 

ordinals in E such that for every ( < wl, k < w and a < 6¢ there is an ordinal 

7 which is good for ((, a, k), where by "~ is good  for ((, a, k) we mean that 

(16) 

(i) "r < 6~-bl, 

(ii) T~ C_ T~, T-r N k2 = T~ n k2, 

(iii) for all ~ <_ ( such that 6~ > a and for every e < 6¢, there is a ~ < 6~ 

such that T7 C_ T~ C_ T~ and T~ is almost of width h .  

For ~ < Wl let "y~ be the "r which is good for (~,0,0). We choose 

y~ E L i m ( T ~ ) \ { y ~ :  ~3 < ~}, and let X = {0¢: ~ < Wl}. X is clearly un- 

countable. We shall prove that  X is null-additive by proving that  X satisfies 
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condition (c) of Theorem 13. For a given corset f ,  f = f~ for some e < wl. Let 

< ¢Z 1 be such that 5~ > e. Let Z = {/3 < 5~+1: T~ is almost of width f~}. We 

shall see that  X _c {~¢: ( < (} U U~ez Lim (T/~). Since Z and ~ are countable, 

condition (c) of Theorem 13 holds. 

Let ~ > ~; it suffices to prove that ~¢ E Lira (T~) for some/3 E Z. e < 5e and, 

since "re is good for a = k = 0, there is a t3 < 5~ such that T~¢ C_ TZ, and T~ is 

of width f~. Thus fl E Z and r/¢ E Lim (T~¢) C_ Lim (T~). 

Proof of Lemma 20: We define (5¢: ~ < wl) as follows. 50 is the least member of 

E. For a limit ordinal (, we set 5¢ = U~<¢ 5~. Since 5~ E E for ~ < ~, also 5¢ E E. 

We shall now define 5¢+1. We shall assume, as an induction hypothesis, that for 

each ~ < ~ the lemma holds. For each a < 5¢ and k < w we shall find a "y(a, k) 

which is good for ((, a,  k) and we shall choose 5¢+1 to be the least member of E 

greater than all these "y(a, k)'s. 

First we shall show that what the lemma claims holds for the case where 

is a successor or 0. Whenever we shall write ~ - 1 we shall assume that ( is a 

successor. Let a < 5¢ and k < ~ be given, and let {en: n < ~} = {e: e < 5¢}. We 

define sequences (an: n < w) and (kn: n < w) so that 

(a) k0 = k. I f ¢  = 0 o r  a < 5¢-1 then a0 = a. I f a  _> 5¢-1 t h e n a 0  is an 

ordinal which is good for (~ - 1, a, k). In any case ao < 5¢, T~o C T~ and 

T~o N k2 = T,~ M k2. 

(b) an+l < 5¢. 

(c) T~.~ c_ T~o. 
(d) T~.+~ n k~2 = To~ n k~2. 
(e) T~+~ is almost of width f ~ .  

(f) kn+l > k,~ and every ~ E T~.+~ M k~2 has at least two extensions in 

T~+~ M k~+~2. 

There are indeed such sequences (an: n < w) and (kn: n < w). (a) determines k0 

and ao; i f a  < 5¢-1, then there is an ao as in (a) by the induction hypothesis. 5¢ 

is in E and let us take an, e~, kn, an+l for a,/3, n, 7 in the definition of E, then 

5¢ E E says that there is an a,~+l which satisfies (b)-(e). Since T~+~ is perfect 

there is a k~+l as in (f). 

Let T = ~ne~T~ . By (c), (d), (f) T is a perfect tree, hence it is T.~ for 

some 7 < wl. Since T, and therefore also 7, depend on a and k, we denote 7 by 

7(a,  k). As is easily seen T~(~,~) C_ T~, T~(~,~) N ~2 = T~ N ~2, and, for every 

e < 5¢, TT(~,~) _C T~+~ _C T~, where l is such that e = e~. This means that (iii) 
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of (16) holds for ~ = (. We shall have to show that (iii) holds for ~ < ( and to 

deal with the case where ~ is a limit ordinal. 

If ( is a limit ordinal let ((n: n < w) be an increasing sequence such that 6¢0 > a 

and Un<~ (n = (. We construct the sequences (an: n < w) and (kn: n < w) as 

in the case where ( is a successor, except that (a), (b), (e) are replaced by 

(a' )  ko = k, a o  = a .  

(b') an < 6¢.  

(e') an+l is good for (¢n, a, k). 

By the induction hypothesis that the lemma holds for the ~n's there are indeed 

such sequences (an: n < w) and (kn: n < w). Let T = Nn<~ T ~ .  As above, T is 

a perfect tree and T = T~(~,k), T~(~,k) C_ T~ and T~(~,k) N k2 = T~ n k2. 

We shall now see that for both cases of ( with which we are dealing, (iii) holds 

for ( < (. If ( is a successor then ( < ( - 1 and, since so is, by (a), good for 

(( - 1, a, k), there is a ~ < 6¢ such that T~ o C_ T~ _C T~ and TZ is almost of width 

f~. Note that if a < 6¢-1 then, by the induction hypothesis, we have a "y < 6 4 

which is good for ((, a, k), and if ( = 0 then (iii) holds vacuously, hence we may 

assume that ~ > 0 and a C [6¢-1,6¢). Since T~(~,k) C_ T~0 , ~ is as required by 

(iii). If ( is a limit ordinal, then ( _< (n for some n < w. Since a~+l is good for 

(n, then there is a ~ < 6~ such that T~+~ C_ T~ C_ T,  and T~ is almost of width 

f~. Since T~(~,k) C_ T~+~,/~ is as required by (iii). 

The only case left is that where ( is a limit ordinal and ( = ¢ in (iii). Since 

c~,e < ( also a ,e  < (n for some n < w. an+l  is good for (n, hence there is 

a /3 < 6¢. such that T~.+~ C_ TZ C_ T~ and TZ is almost of width f~. Since 

T-y(~,k) C_ T~+~ and (~ < ~, ~ is as required by (iii). 
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